Question	Scheme	Marks	AOs	
1	$\frac{9^{x-1}}{3^{y+2}} = 81 \Longrightarrow \frac{3^{2x-2}}{3^{y+2}} = 3^4 \text{ or } \frac{9^{x-1}}{3^{y+2}} = 81 \Longrightarrow \frac{9^{x-1}}{9^{\frac{1}{2}(y+2)}} = 9^2$	M1	1.1b	
	$\Rightarrow 2x - 2 - y - 2 = 4 \Rightarrow y = \text{ or } \Rightarrow x - 1 - \frac{1}{2}y - 1 = 2 \Rightarrow y =$	dM1	1.1b	
	$\Rightarrow y = 2x - 8$	A1	1.1b	
		(3)		
	Eg. $\log_3\left(\frac{9^{x-1}}{3^{y+2}}\right) = \log_3 81$	M1	1.1b	
Alt	$\Rightarrow (x-1)\log_3(9^{x-1}) - (y+2)\log_3(3^{y+2}) = 4$ $\Rightarrow 2(x-1) - y - 2 = 4 \Rightarrow y =$	dM1	1.1b	
	$\Rightarrow y = 2x - 8$	A1	1.1b	
(3 marks)				
Notes				
M1: Attempts to set 9^{x-1} and 81 as powers of 3. Condone $9^{x-1} = 3^{2x-1}$ and $9^{x-1} = 3^{3x-3}$.				
Alternatively attempts to write each term as a logarithm of base 3 or 9. You must see the base written to award this mark.				
dM1: Attempts to use the addition (or subtraction) index law, or laws or logarithms, correctly and rearranges the equation to reach <i>y</i> in terms of <i>x</i> . Condone slips in their rearrangement.				

A1: y = 2x - 8

Question	Scheme	Marks	AOs	
2 (a)	$35 (\text{km}^2)$	B1	3.4	
		(1)		
(b)	Sets their $60 = 80 - 45e^{14c} \implies 45e^{14c} = 20$	M1 A1	1.1b 1.1b	
	$\Rightarrow c = \frac{1}{14} \ln\left(\frac{20}{45}\right) = \dots - 0.0579$	dM1	3.1b	
	$A = 80 - 45e^{-0.0579t}$	A1	3.3	
		(4)		
(c)	 Gives a suitable answer The maximum area covered by trees is only 80km² The "80" would need to be "100" Substitutes 100 into the equation of the model and shows that the formula fails with a reason eg. you cannot take a log of a negative number 	B1	3.5b	
	log of a negative namoer	(1)		
		(6	marks)	
	Notes			
(a)				
B1: Uses the equation of the model to find that $35 (\text{km}^2)$ of the reserve was covered on 1^{st} January 2005. Do not accept eg. 35 m^2				
(b)				
M1: Sets their $60 = 80 - 45e^{14c} \Rightarrow Ae^{14c} = B$				
A1: $45e^{14c} = 20$ or equivalent.				
dM1: A full and careful method using precise algebra, correct log laws and a knowledge that e^x and $\ln x$ are inverse functions and proceeds to a value for <i>c</i> .				
A1: Gives a complete equation for the model $A = 80 - 45e^{-0.0579t}$				
(c)				
B1: Gives a suitable interpretation (See scheme)				

Questic	n Scheme	Marks	AOs
3 (a)	(<i>k</i> =) 0.8	B1	1.1b
	05. 05.	(1)	2 (1
(b)	$1 = 0.8 + 1.4e^{-0.5t} \Longrightarrow 1.4e^{-0.5t} = 0.2$	M1	3.1b
	$-0.5t = \ln\left(\frac{0.2}{1.4}\right) \Longrightarrow t = \dots$	M1	1.1b
	awrt 3.9 minutes	A1	1.1b
(-)		(3)	
(C)	$\left(\frac{\mathrm{d}P}{\mathrm{d}t}\right) = -0.7\mathrm{e}^{-0.5t}$ $\left(\frac{\mathrm{d}P}{\mathrm{d}t}\right) = -0.7\mathrm{e}^{-0.5\times2}$	M1	3.1b
	$= \operatorname{out} 0.258 (\operatorname{log}/\operatorname{om}^2 \operatorname{por} \operatorname{minuto})$	A 1	1 1h
	– awrt 0.238 (kg/cm per minute)	(2)	1.10
		(6)	marks)
	Notes		,
 B1: Completes the equation for the model by obtaining (k =) 0.8 or equivalent. (b) *Be aware this could be solved entirely using a calculator which is not acceptable* M1: For using the model with P = 1 and their value for k from (a) and proceeding to Ae^{±0.5t} = B. Condone if A or B are negative for this mark. M1: Uses correct log work to solve an equation of the form Ae^{±0.5t} = B leading to a value for t. They cannot proceed directly to awrt 3.9 without some intermediate working seen. Eg t = 2ln 7 or -2ln(¹/₇) is acceptable. Also allow 1.4e^{-0.5t} = 0.2 ⇒ -0.5t = -1.9459 ⇒ t = This cannot be scored from an unsolvable equation (eg when their k1 so that e^{±0.5t}, 0). 			
AI:	A1: Accept awrt 3.9 minutes or $t = awrt 3.9$ with correct working seen. eg $1.4e^{-0.5t} = 0.2 \Longrightarrow t = 3.9$ would be M1M0A0		
(c)	*Be aware this can be solved entirely using a calculator which is not a	acceptabl	e*
M1:	inks rate of change to gradient and differentiates to obtain an expression of the form $e^{-0.5t}$ and substitutes $t = 2$. Do not accept $Ate^{-0.5t}$ as the derivative. eware that substituting $t = 2$ and proceeding from e^{-1} to e^{-2} is M0A0		
A1:	btains awrt 0.258 with differentiation seen. (Units not required) Condone awrt -0.258 wrt ± 0.258 with no working is M0A0. Isw after a correct answer is seen.		
(Ignore in (c) any spurious notation on the LHS when differentiating such as $P = \dots$ or $\frac{dy}{dx} = \dots$)			

Question	Scheme	Marks	AOs
4(a)	A = 1000	B1	3.4
	$2000 = 1000e^{5k}$ or $e^{5k} = 2$	M1	1.1b
	$e^{5k} = 2 \Longrightarrow 5k = \ln 2 \Longrightarrow k = \dots$	M1	2.1
	$N = 1000e^{\left(\frac{1}{5}\ln 2\right)t}$ or $N = 1000e^{0.139t}$	A1	3.3
		(4)	
(b)	$\frac{dN}{dt} = 1000 \times \left(\frac{1}{5}\ln 2\right) e^{\left(\frac{1}{5}\ln 2\right)t} \text{ or } \frac{dN}{dt} = 1000 \times 0.139 e^{0.139t}$ $\left(\frac{dN}{dt}\right)_{t=8} = 1000 \times \left(\frac{1}{5}\ln 2\right) e^{8\times\frac{1}{5}\ln 2} \text{ or } \left(\frac{dN}{dt}\right)_{t=8} = 1000 \times 0.139 e^{0.139\times 8}$	M1	3.1b
	= awrt 420	A1	1.1b
		(2)	
(c)	$500e^{1.4 \times \left(\frac{1}{5}\ln 2\right)T} = 1000e^{\left(\frac{1}{5}\ln 2\right)T} \text{ or } 500e^{1.4 \times "0.139"t} = 1000e^{"0.139"t}$	M1	3.4
	Correct method of getting a linear equation in T E.g. $0.08T \ln 2 = \ln 2$ or $1.4 \times "0.339"T = \ln 2 + "0.339"t$	M1	2.1
	T = 12.5 hours	A1	1.1b
		(3)	
(9 marks)			
Notes			

Mark as one complete question. Marks in (a) can be awarded from (b)

(a)

- B1: Correct value of A for the model. Award if equation for model is of the form $N = 1000e^{-t}$
- M1: Uses the model to set up a correct equation in k. Award for substituting N = 2000, t = 5 following through on their value for A.

M1: Uses correct ln work to solve an equation of the form $ae^{5k} = b$ and obtain a value for k

A1: Correct equation of model. Condone an ambiguous $N = 1000e^{\frac{1}{5}\ln 2t}$ unless followed by something incorrect. Watch for $N = 1000 \times 2^{\frac{1}{5}t}$ which is also correct

M1: Differentiates αe^{kt} to βe^{kt} and substitutes t = 8 (Condone $\alpha = \beta$ so long as you can see an attempt to differentiate)

A1: For awrt 420 (2sf).

(c)

M1: Uses both models to set up an equation in T using their value for k, but also allow in terms of k M1: Uses correct processing using lns to obtain a linear equation in T (or t)

A1: Awrt 12.5

.....

Answers to (b) and (c) appearing without working (i.e. from a calculator).

It is important that candidates show sufficient working to make their methods clear.

(b) If candidate has for example $N = 1000e^{0.139t}$, and then writes at $t = 8 \frac{dN}{dt} = awrt 420 award both$

marks. Just the answer from a correct model equation score SC 1,0.

(c) The first M1 should be seen E.g $500e^{1.4 \times "0.139"t} = 1000e^{"0.139"t}$

If the answer T = 12.5 appears without any further working score SC M1 M1 A0

.....

Question	Scheme	Marks	AOs
5 (a)	265 thousand	B1	3.4
		(1)	
(b)	Attempts $\frac{\mathrm{d}N_b}{\mathrm{d}t} = 11\mathrm{e}^{0.05t}$	M1	1.1b
	Substitutes $t = 10$ into their $\frac{dN_b}{dt}$	M1	3.4
	$\frac{dN_b}{dt}$ = awrt 18.1 which is approximately 18 thousand per year *	A1*	2.1
		(3)	
(c)	Sets $45 + 220e^{0.05t} = 10 + 800e^{-0.05t} \Longrightarrow 220e^{0.05t} + 35 - 800e^{-0.05t} = 0$	M1	3.1b
	Correct quadratic equation $\Rightarrow 220 \left(e^{0.05t}\right)^2 + 35e^{0.05t} - 800 = 0$	A1	1.1b
	$e^{0.05t} = 1.829, (-1.988) \Longrightarrow 0.05t = \ln(1.829)$	M1	2.1
	T = 12.08	A1	1.1b
		(4)	
			(8 marks)
Notes:			

(a) May be seen in the question so watch out.

B1: Accept 265 thousand or 265 000 or equivalent such as 265 k but not just 265.

(b)

M1: Differentiates to a form $k e^{0.05t}$, $k > 0, k \neq 220$. Do not be too concerned about the lhs.

M1: Substitutes t = 10 into a changed function that was formed from an attempt at differentiation.

The left hand side must have implied differentiation. E.g. Rate = , $N', \frac{dN_b}{dt}, \frac{dN}{dt}$ or even $\frac{dy}{dx}$ A1*: Full and complete proof that requires

- some correct lhs seen at some point. E.g. "Rate = , " $\frac{dN_b}{dt}$, $\frac{dN}{dt}$ but condone N'.
 - an intermediate line/answer of either $11e^{0.05\times10}$ or awrt 18.1 before a minimal conclusion which must be referencing the 18 000 or 18 thousand

(c)

M1: Attempts to set both equations equal to each other and simplify the constant terms.

Look for $220e^{0.05t} + 35 = 800e^{-0.05t}$ o.e but condone slips

It is also possible to set $\frac{N-45}{220} = \left(e^{0.05t}\right) = \frac{800}{N-10}$ and form an equation in N

A1: Correct quadratic form.

Look for $220(e^{0.05t})^2 + 35e^{0.05t} - 800 = 0$ or $220e^{0.1t} + 35e^{0.05t} - 800 = 0$ but allow with terms in different order such as $220e^{0.1t} + 35e^{0.05t} = 800$

FYI the equation in N is $N^2 - 55N - 175550 = 0$

M1: Full attempt to find the value of *t* (or a constant multiple of *t*)

This involves the key step of recognising and solving a 3TQ in $e^{0.05t}$ followed by the use of lns. If the answers to the quadratic just appear (from a calculator) you will need to check. Accuracy should be to 3sf.

You may see different variables used such as x

 $x = e^{0.05t}, 220e^{0.1t} + 35e^{0.05t} = 800 \Longrightarrow 220x^2 + 35x = 800 \Longrightarrow x = 1.82... \Longrightarrow t = 20\ln 1.82...$

Allow use of calculator for solving the quadratic and for $e^{0.05t} = 1.82.. \Rightarrow t = 12.08$

Via the *N* route it will involve substituting the positive solution to their quadratic into either equation to find a value for t/T using same rules as above.

A1: AWRT 12.08

.....

Answers with limited or no working in (b) and (c)

(b) A derivative in the correct form must be seen

(c) Candidates who state $45 + 220e^{0.05t} = 10 + 800e^{-0.05t}$ followed by awrt 12.08 (presumably from using num-solv on their calculators) can score SC 1100. Rubric on the front of the paper states that "Answers without working may not gain full credit" so we demand a method in this part.

.....

Question	Scheme	Marks	AOs
6(a)	(<i>A</i> =) 55	B 1	3.4
		(1)	
(b)	$\left\{\frac{\mathrm{d}H}{\mathrm{d}t}\right\} - AB\mathrm{e}^{-Bt} \text{or} \left\{\frac{\mathrm{d}H}{\mathrm{d}t}\right\} - "55"B\mathrm{e}^{-Bt}$	M1	3.1b
	$-B \times "55" = -7.5 \Longrightarrow B = \dots \left(\frac{3}{22} = \text{awrt } 0.136\right)$	M1	1.1b
	$H = 55e^{-0.136t} + 30$	A1cso	3.3
		(3)	
	Notor	(4	marks)
(a)	notes		
(a) B1: 55 only (b)	. Just look for this value e.g. " $A =$ " is not required. Ignore any "units" if given	e.g. 55 °C	
M1: Differe in so al	entiates to obtain an expression of the form $\pm ABe^{-Bt}$ which may have their A alr low for $\pm ABe^{-Bt}$ or $\pm "55"Be^{-Bt}$	eady subst	tituted
M1: Substit	utes $t = 0$ and their A into their $\frac{dH}{dt}$, sets = ±7.5 and proceeds to find a value fo	r B which	
may be	e implied by $\frac{3}{22}$ or awrt 0.136		
Their $\frac{dH}{dt}$ must not be <i>H</i> . i.e. it must be a "changed" function.			
A1cso: Correct equation which follows fully correct work $H = 55e^{-0.136t} + 30$ but condone $H = 55e^{-\frac{3}{22}t} + 30$ The final equation must be correct but you can ignore spurious notation within their solution such as integral signs and "+ c" which do not affect their solution.			
Marking guidance is as follows for particular cases in (b)			
Case 1: $\left\{\frac{dH}{dt} = \right\} - "55"Be^{-Bt}, -"55"Be^{-Bt} = 7.5 \Rightarrow B = -0.136 \Rightarrow H = 55e^{-0.136t} + 30$ scores M1M1A0			
Error: it should be – 7.5			
Case 2: $\left\{\frac{dI}{d}\right\}$	$\frac{H}{t} = \begin{cases} "55" Be^{-Bt}, "55" Be^{-Bt} = -7.5 \Rightarrow B = -0.136 \Rightarrow H = 55e^{-0.136t} + 30 \text{ scores } \mathbf{M} \end{cases}$	1M1A0	
Error: incorrect derivative			
Case 3: $\left\{\frac{dH}{dt}\right\}$ "55" Be^{-Bt} , "55" $Be^{-Bt} = 7.5 \Rightarrow B = 0.136 \Rightarrow H = 55e^{-0.136t} + 30$ scores M1M1A0			
Error: incorrect derivative			
Case 4: $\left\{\frac{dI}{d}\right\}$	$\frac{H}{t} = \begin{cases} -"55"Be^{-Bt}, "55"B = 7.5 \Rightarrow B = 0.136 \Rightarrow H = 55e^{-0.136t} + 30 \text{ scores M1M1} \end{cases}$	A1	
No errors			